If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-10k^2-4+23=0
We add all the numbers together, and all the variables
-10k^2+19=0
a = -10; b = 0; c = +19;
Δ = b2-4ac
Δ = 02-4·(-10)·19
Δ = 760
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{760}=\sqrt{4*190}=\sqrt{4}*\sqrt{190}=2\sqrt{190}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{190}}{2*-10}=\frac{0-2\sqrt{190}}{-20} =-\frac{2\sqrt{190}}{-20} =-\frac{\sqrt{190}}{-10} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{190}}{2*-10}=\frac{0+2\sqrt{190}}{-20} =\frac{2\sqrt{190}}{-20} =\frac{\sqrt{190}}{-10} $
| -2x^2-8x+42=0 | | 12a^2+10a-16=0 | | 3-n=0.2 | | (x+2)²=64 | | 5x+1/3=x/2 | | 6+4(r-2=r+7 | | 3/5x+11=4/5x-2 | | 10x^2-120x+270=0 | | 3-x/4=2+x | | 9-2x=19+3x | | 12a+10a-16=0 | | m²=27 | | 2x(2x+4)=14 | | 3x(4-2x(0.7x0.5))=2.1 | | 3x(4-2x(0.7x0.5))=9.9 | | 4t^2+5t=1 | | 2^x=160000000 | | 3g(2g+3)=4g+17 | | -13+34=-3(x+7) | | X-7=2x/3 | | 3(2x+9)=-16+7 | | 7-5x=6x-24 | | 3(2x+9)=-16+8 | | x+x+6=398 | | 2x^+12x=0 | | 10-2(y=4)=6 | | 27x-63=14x-35 | | 17-3(x+1)=14-3x | | y+8y=72 | | (2x-5)/9=(3x-7)/7 | | 6x+30=8x+36 | | m^=27 |